Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor
نویسندگان
چکیده
In this paper, we report real-time measurement results of various contact forces exerted on a new flexible capacitive three-axis tactile sensor array based on polydimethylsiloxane (PDMS). A unit sensor consists of two thick PDMS layers with embedded copper electrodes, a spacer layer, an insulation layer and a bump layer. There are four capacitors in a unit sensor to decompose a contact force into its normal and shear components. They are separated by a wall-type spacer to improve the mechanical response time. Four capacitors are arranged in a square form. The whole sensor is an 8 × 8 array of unit sensors and each unit sensor responds to forces in all three axes. Measurement results show that the full-scale range of detectable force is around 0–20 mN (250 kPa) for all three axes. The estimated sensitivities of a unit sensor with the current setup are 1.3, 1.2 and 1.2%/mN for the x-, yand z-axes, respectively. A simple mechanical model has been established to calculate each axial force component from the measured capacitance value. Normal and shear force distribution images are captured from the fabricated sensor using a real-time measurement system. The mechanical response time of a unit sensor has been estimated to be less than 160 ms. The flexibility of the sensor has also been demonstrated by operating the sensor on a curved surface of 4 mm radius of curvature. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Design, Modeling, and Construction of a New Tactile Sensor for Measuring Contact-Force
This paper presents the design, modeling, and testing of a flexible tactile sensor and its applications. This sensor is made of polymer materials and can detect the 2D surface texture image and contact-force estimation. The sensing mechanism is based on the novel contact deflection effect of a membrane. We measure the deflection of the membrane with measuring the strain in the membrane with emb...
متن کاملDesign and Construction of a New Capacitive Tactile Sensor for Measuring Normal Tactile Force
This paper presents the design, construction and testing of a new capacitive tactile sensor for measurement of normal tactile force. The operation of proposed sensor has been investigated in ASTABLE and MONOSTABLE circuits. According to the results of these circuits the deviation of ASTABLE circuit results is less than MONOSTABLE circuit results. In addition, the results obtained from ASTABLE c...
متن کاملDesign and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane
This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...
متن کاملFlexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement
A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF) film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrod...
متن کاملMultifingered Robotic Hands: Contact Experiments using Tactile Sensors
Capacitive tactile sensors are constructed and installed to the ngers of the HKUST hands for measurement of position, force and direction of principle curvature of contact point. The hardware and software for signal processing are designed such that the contact information is sent to the motion control computer in real time. Experiments in rolling and sliding contact motions are then performed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011